Copied to
clipboard

G = C32:2C32order 288 = 25·32

The semidirect product of C32 and C32 acting via C32/C8=C4

metabelian, soluble, monomial, A-group

Aliases: C32:2C32, (C3xC12).4C8, (C3xC24).1C4, (C3xC6).2C16, C8.4(C32:C4), C2.(C32:2C16), C24.S3.3C2, C4.2(C32:2C8), SmallGroup(288,188)

Series: Derived Chief Lower central Upper central

C1C32 — C32:2C32
C1C32C3xC6C3xC12C3xC24C24.S3 — C32:2C32
C32 — C32:2C32
C1C8

Generators and relations for C32:2C32
 G = < a,b,c | a3=b3=c32=1, cbc-1=ab=ba, cac-1=a-1b >

Subgroups: 56 in 22 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C4, C8, C16, C32, C32:C4, C32:2C8, C32:2C16, C32:2C32
2C3
2C3
2C6
2C6
2C12
2C12
9C16
2C24
2C24
9C32
6C3:C16
6C3:C16

Smallest permutation representation of C32:2C32
On 96 points
Generators in S96
(2 40 70)(4 72 42)(6 44 74)(8 76 46)(10 48 78)(12 80 50)(14 52 82)(16 84 54)(18 56 86)(20 88 58)(22 60 90)(24 92 62)(26 64 94)(28 96 34)(30 36 66)(32 68 38)
(1 39 69)(2 40 70)(3 71 41)(4 72 42)(5 43 73)(6 44 74)(7 75 45)(8 76 46)(9 47 77)(10 48 78)(11 79 49)(12 80 50)(13 51 81)(14 52 82)(15 83 53)(16 84 54)(17 55 85)(18 56 86)(19 87 57)(20 88 58)(21 59 89)(22 60 90)(23 91 61)(24 92 62)(25 63 93)(26 64 94)(27 95 33)(28 96 34)(29 35 65)(30 36 66)(31 67 37)(32 68 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (2,40,70)(4,72,42)(6,44,74)(8,76,46)(10,48,78)(12,80,50)(14,52,82)(16,84,54)(18,56,86)(20,88,58)(22,60,90)(24,92,62)(26,64,94)(28,96,34)(30,36,66)(32,68,38), (1,39,69)(2,40,70)(3,71,41)(4,72,42)(5,43,73)(6,44,74)(7,75,45)(8,76,46)(9,47,77)(10,48,78)(11,79,49)(12,80,50)(13,51,81)(14,52,82)(15,83,53)(16,84,54)(17,55,85)(18,56,86)(19,87,57)(20,88,58)(21,59,89)(22,60,90)(23,91,61)(24,92,62)(25,63,93)(26,64,94)(27,95,33)(28,96,34)(29,35,65)(30,36,66)(31,67,37)(32,68,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (2,40,70)(4,72,42)(6,44,74)(8,76,46)(10,48,78)(12,80,50)(14,52,82)(16,84,54)(18,56,86)(20,88,58)(22,60,90)(24,92,62)(26,64,94)(28,96,34)(30,36,66)(32,68,38), (1,39,69)(2,40,70)(3,71,41)(4,72,42)(5,43,73)(6,44,74)(7,75,45)(8,76,46)(9,47,77)(10,48,78)(11,79,49)(12,80,50)(13,51,81)(14,52,82)(15,83,53)(16,84,54)(17,55,85)(18,56,86)(19,87,57)(20,88,58)(21,59,89)(22,60,90)(23,91,61)(24,92,62)(25,63,93)(26,64,94)(27,95,33)(28,96,34)(29,35,65)(30,36,66)(31,67,37)(32,68,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(2,40,70),(4,72,42),(6,44,74),(8,76,46),(10,48,78),(12,80,50),(14,52,82),(16,84,54),(18,56,86),(20,88,58),(22,60,90),(24,92,62),(26,64,94),(28,96,34),(30,36,66),(32,68,38)], [(1,39,69),(2,40,70),(3,71,41),(4,72,42),(5,43,73),(6,44,74),(7,75,45),(8,76,46),(9,47,77),(10,48,78),(11,79,49),(12,80,50),(13,51,81),(14,52,82),(15,83,53),(16,84,54),(17,55,85),(18,56,86),(19,87,57),(20,88,58),(21,59,89),(22,60,90),(23,91,61),(24,92,62),(25,63,93),(26,64,94),(27,95,33),(28,96,34),(29,35,65),(30,36,66),(31,67,37),(32,68,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

48 conjugacy classes

class 1  2 3A3B4A4B6A6B8A8B8C8D12A12B12C12D16A···16H24A···24H32A···32P
order1233446688881212121216···1624···2432···32
size11441144111144449···94···49···9

48 irreducible representations

dim1111114444
type+++-
imageC1C2C4C8C16C32C32:C4C32:2C8C32:2C16C32:2C32
kernelC32:2C32C24.S3C3xC24C3xC12C3xC6C32C8C4C2C1
# reps11248162248

Matrix representation of C32:2C32 in GL5(F97)

10000
01000
00100
0009696
00010
,
10000
00100
0969600
0009696
00010
,
630000
00010
00001
060600
0433700

G:=sub<GL(5,GF(97))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,96,1,0,0,0,96,0],[1,0,0,0,0,0,0,96,0,0,0,1,96,0,0,0,0,0,96,1,0,0,0,96,0],[63,0,0,0,0,0,0,0,60,43,0,0,0,6,37,0,1,0,0,0,0,0,1,0,0] >;

C32:2C32 in GAP, Magma, Sage, TeX

C_3^2\rtimes_2C_{32}
% in TeX

G:=Group("C3^2:2C32");
// GroupNames label

G:=SmallGroup(288,188);
// by ID

G=gap.SmallGroup(288,188);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,14,36,58,80,9413,1356,12550,4717]);
// Polycyclic

G:=Group<a,b,c|a^3=b^3=c^32=1,c*b*c^-1=a*b=b*a,c*a*c^-1=a^-1*b>;
// generators/relations

Export

Subgroup lattice of C32:2C32 in TeX

׿
x
:
Z
F
o
wr
Q
<